Categories
Mobility

9: Electric airplanes – the third revolution

Problem:

Commercial flights now account for 2.5 % of global CO2 emissions. The aircraft industry is expecting a seven-fold increase in air traffic by 2050, and a four-fold increase in GHG emissions, unless fundamental changes are made.

Solution:

Fortunately the world of aviation is boldly accelerating into a new, more silent and less polluting era of electric propulsion. Described as the ‘Third Revolution’ in aviation (after heavier than air and jet engines) the introduction of hybrid-electric aircraft could be a massive breakthrough for sustainable aviation.

From the stratosphere to door-to-door, a “hangar” of differing prototypes have now entered into their series-production phase, be they airships, or airplanes carrying up to eight passengers or training would-be pilots, be they vertical take-off drones which can carry a single passenger across a city, or those for delivery, cinema or sport, or merely toys which can be hand-launched and piloted using virtual reality.

One example, the two-seat Pipistrel Taurus Electro G2 electric aircraft is being manufactured at a plant in Italy, 15 mi. (25 km) away from the current Pipistrel Headquarters in Slovenia. Work is underway to mass-produce 4-seater and 19-seater hybrid Pipistrel airplanes at a plant in China from 2020.

In Israel, the Eviation Alice can fly 650 mi. (1,046 km) at around 300mph (480kph), 260 knots with three electric motors, one on the tail and one on each wingtip. The prototype carries a 900 kWh li-ion battery and carries nine passengers.

US regional airline Cape Air has already expressed an interest in the all-electric Alice, saying it will order a “double-digit” number of the aircraft to operate on some of its short routes. The aircraft is expected to take to the skies in 2022. (eviation.co/alice).

For long haul trans-continental flights, one solution is the hydrogen fuel cell. In Germany, the first short 15-minute demonstration flight of the hydrogen fuel-cell powered HY4 was made in September 2016 at Stuttgart Airport above the public and the media; air traffic control had all the other air traffic stopped, so spectators could hear the almost-completely-silent fuel cell airplane, flown by pilots, Johannes Anton and Nejc Faganelj in one cockpit with two dummy passengers in the other.

In 2018, the E-Fan X project to develop a hybrid-electric aviation propulsion system was unveiled by Airbus, Siemens and Rolls-Royce. Parts manufacturing began in 2019, but the program fell victim to the COVID19 pandemic

In March 2017 Professor Josef Kallo, head of the Institute for Energy Conversion and Storage at Ulm University, describing this flight, announced plans to test the technological platform over the coming years before the target will be upped to six or eight seats. He explained: “Recent studies on commercial aviation show that there are indeed feasible propulsion designs for regional air travel with up to 40 seats and a range of 435 mi. (700 km) or below, even though the technical challenges are significant.”

Other solutions are being trialled such as electric tugs towing more electric airliners out to and back from the runways of international airports whose rooftop solar panels could recharge them, while one day a V-formation of long-haul airliners could create a wake to further reduce fuel consumption.

The above does not include development of  half a dozen Vertical Take Off and Landing (eVTOL) 2-6 seater electric city taxi drones such as the

and more on the way!

Discover solution 10: high fashion fabrics from fish skins, seaweed, algae and used toilet paper.

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Leave a comment