Problem:
What to do with excess energy from thermal generation plants, steel mills and LNG terminals.
Solution:
A CRYOBattery
Cryogenic energy storage makes use of excess energy, such as that generated by renewable sources, which cannot be sent immediately to the grid to liquefy air and store the liquid until the electricity is needed and can be distributed. At this point, the liquid air is allowed to evaporate and expand through a turbine, where its latent energy of vaporisation is converted into electric current.
Connecting to thermal generation plants, steel mills and LNG terminals can further boost the system’s efficiency and diversify its offering.
In 2011, a 300 kW, 2.5 MWh storage capacity pilot cryogenic energy system was developed by researchers at the University of Leeds and Highview Power that used liquid air (with the CO2 and water removed as they would turn solid at the storage temperature) as the energy store, and low-grade waste heat to boost the thermal re-expansion of the air.
In April 2014 the UK government announced it had given £8 million to Viridor and Highview Power to fund the next stage of the demonstration. The resulting grid-scale demonstrator plant at Pilsworth Landfill facility in Bury, Greater Manchester, UK, started operation in April 2018.
This was based on research by the Birmingham Centre for Cryogenic Energy Storage (BCCES) associated with the University of Birmingham, and had storage for up to 15 MWh, with a peak supply of 5 MW (so when fully charged lasts for three hours at maximum output) and is designed for an operational life of 40 years.
With Highview Power’s Potentially CRYOBattery is able to deliver anywhere from 20 MW/80 MWh to more than 200 MW/1.2 GWh of energy to power up to 200,000 homes for a whole day.
In June 2020, Highview, teamed up with Carlton Power and announced construction of the world’s biggest liquid air battery with a capacity of 50 MW/250 MWh at a the Trafford Energy Park, a decommissioned thermal power station site in the North of England. With the first system scheduled to go into operation by 2022, another four will be set up in the UK, able to deliver a total of over 1GWh.
Discover Solution 94: Bringing extinct animals back to life.
Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.