Categories
Energy Mobility

134: Energy roads


Problem:

Highways and roads only use up energy to build and to maintain.

Solution:

Engineers from Lancaster University, UK, are working on ‘piezolectric’ ceramics that when embedded in road surfaces would be able to harvest and convert vehicle vibration into electrical energy. The research project, led by Professor Mohamed Saafi, will design and optimise energy recovery of around one to two kWs per kilometre under ‘normal’ traffic volumes—which is around 2,000 to 3,000 cars an hour. The system developed will then convert this mechanical energy into electric energy to power things such as street lamps, traffic lights and electric car charging points.


In Portugal, an energy road system called ESPHERA has been financed by the Centre for the Innovation of Smart Infrastructures, founded by Ferrovial, the Castile-La Mancha regional government and the University of Alcalá. Ferrovial is also in charge of technical coordination for ESPHERA, which has benefitted from the collaboration of Cintra (the motorway subsidiary company of Ferrovial) and the Aravía Company, who hold the concession for the maintenance of the section of the A-2 motorway between Zaragoza and Calatayud. (ferrovial.com)

In 2016 the California Energy Commission (CEC) approved a pilot program in which piezoelectric crystals were installed on several freeways.

Scientists estimate the energy generated from piezoelectric crystals on a 10 mi (16 km) stretch of freeway could provide power for the entire city of Burbank (population: more than 105,000). Italy signed a contract to install this technology in a portion of the Venice-to-Trieste Autostrada.

China’s first solar highway was built by Pavenergy and Qilu Transportation in eastern China’s Shandong province on a section of one of the most highly-trafficked areas, the Jinan City Expressway ring road, stretching for 1.2 mi. (2.4 km) with an area of 63,234 ft² ( 5,875 m²).. The test section proved capable of holding middle size vans with strong friction. Engineers then added wireless vehicle charging into the panels. It opened in December 2017.

In 2019, engineers from the Virginia Polytechnic Institute and State University (Virginia Tech) found a way to 3D print piezoelectric materials, so tailoring the architecture to make them more flexible able to wrap them around any arbitrary curvature.

What you can do: Drive along energy roads once they have been installed

Discover Solution 135: Honeybee inspired energy reduction

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Leave a comment