Carbon Capture

291: Single-walled and mass-produced nanotubes


In 2014 Russia was responsible for 13.7 tons (11.86 tonnes) per capita of carbon emissions.


Russian technology is making the production of single-walled carbon nanotubes almost 100-times cheaper. Experts believe this will help reduce carbon dioxide emissions in Russia by as much as 180 million tons (160 million tonnes) by 2030.

Nanotubes improve the qualities of 70 % of materials known to mankind; that is, they enhance a material’s durability. This helps increase the lifetime of metals, rubber, and other materials by two or three times. And since all sorts of items will last longer, there will be a significant reduction in energy spent for producing new materials, as well as less energy spent to recycle waste.

Mikhail Predtechensky, a member of the Russian Academy of Sciences, was the first scientist to discover a technology that can reduce the price of mass-produced single-walled nanotubes by 50 to 100-times.

In 2009, Predtechensky co-founded OCSiAl Technology (each letter in that word is the Chemical symbol for elements on the periodic table representing Oxygen, Carbon, Silicon and Aluminium). The pilot industrial facility for single wall carbon nanotubes synthesis named Graphetron 1.0 was installed in the Nanomodified Materials Centre at the Technopark of Novosibirsk Akademgorodok, in the R&D centre of OCSiAl.

Four years later, OCSiAl launched the world’s largest industrial system for synthesizing single-walled Graphetron 1.0 nanotubes called Tuball which is capable of producing11 tons per year (10 tonnes) SWCNT and is already building a plant in Luxembourg for a 55 tonnes per year (50 tonne) turn-key production of SWCNT.

OCSiAl’s process for producing SWCNT is protected by patents and patent applications in 50 countries, owned by a global holding company headquartered in Luxembourg, with offices in the USA, Russia, China, Hong Kong, South Korea and India. (

This technology allows the synthesis of a wide range of carbon nanomaterials. In the near future the company plans to establish in Novosibirsk a center for prototyping technologies based on single-layered carbon nanotubes to create rubber, composites, li-ion batteries, and many other materials.

Producers in more than 30 countries buy nanotubes made in Novosibirsk, including South Korea, Japan, the USA, Germany, and Israel. “The nanotubes’ qualities are well-known across the world, yet many still perceive them as highly specialized additives, and so we are fighting this stereotype,” said Kulgaeva.

In July 2019, Chinese companies Haiyi Scientific Trading and Shenyang East Chemical Science Tech both won permission to mass-produce the OCSiAL Tuball Batts. With their combined production capacities, the partners anticipate manufacturing 7,000 tons of Tuball Batts for Chinese battery manufacturers whose grail is a 300 Wh/kg energy density.

In March 2019, a team of researchers at MIT created a new cathode for lithium battery cells which could allow for smaller and lighter lithium batteries. The team said an initial version of the battery, without optimization, achieved a gravimetric energy density of more than 360 Wh/kg, and volumetric energy density of 581 Wh/liter.

The researchers added that with further work and optimization they believed the battery could reach 400 Wh/kg and 700 Wh/liter – greatly increased from commercially available 260WH/kg li-ion batteries made by several manufacturers in Japan, China and South Korea.

Discover Solution 292: faecal to water OmniProcessor

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Leave a comment

Translate »