Categories
Planet Care Carbon Capture Mobility

268: Tree-planting drones

Problem:

Every year, 15 billion trees are destroyed from natural and anthropogenic causes. Despite US$ 50 billion a year spent on replanting, there remains an annual net loss of 6 billion trees. Governments have made commitments to restore 860 million ac (350 million ha) of degraded land, equivalent to an area the size of India, which could accommodate around 300 billion trees, by 2030.

Solution:

Tree-planting drones


Startups have created drone-planting systems that achieve an uptake rate of 75 % and decrease planting costs by 85 %. These systems shoot pods with seeds and plant nutrients into the soil, providing the plant all the nutrients necessary to sustain life. Two companies are using drones to step up the rate of tree-planting: BioCarbon Engineering founded by Lauren Fletcher and DroneSeed, founded by Grant Canary.

During the late 1990s, Lauren E. Fletcher, with a Master’s Degree in Civil and Environmental Engineering was a space systems engineer at NASA Ames Research Center, specialising in bio engineering. In 2007, he was at the International Space University, then from 2008 to 2010 at Stanford University. From 2010 to 2019 Fletcher was a Doctoral student at Oxford University’s department of Physics on ”Project Mars on Earth.”

In 2009 by while Fletcher was at COP15 in Copenhagen, he became concerned about the state of our world: degrading climate, loss of natural environments, significant biodiversity losses, and a potential for global scale human suffering. After years of studying climate change and the environment, Fletcher asked himself how the damage of more than a century of anthropogenic development could be reversed. The answer, in part, is restoring the planet’s decimated forests, to counter industrial scale deforestation using industrial scale reforestation.

In 2013, Fletcher linked up with businessperson Susan Graham with a PhD in healthcare innovation to found the company called BioCarbon Engineering (BCE), based in Eynsham, Oxfordshire, UK, to plant at least 1 billion trees a year with drone swarms. To do this needed a technician.

Enter French drone engineer, Jeremie Leonard. From 2005 to 2007 Leonard studied at the Lycée Marcelin Berthelot, Saint Maur des Fossés, France, then at the Ecole Supérieure d’Electricité, at Gif Sur Yvette, Isle de France.

He then crossed the English Channel to study for his PhD at Cranfield University, between 2011 and 2014, where the aim of his thesis, named “Project Athena”, was to develop a fully autonomous swarm of medium-altitude, long-endurance Unmanned Aerial Vehicles (MALE UAV) with integrated health management.

Leonard’s work encompassed research on mission planning, multi-agent control and swarm energy management. In 2014 Leonard was recruited by Fletcher to BioCarbon Engineering. The “seed-dropping” system developed by BCE uses satellite and drone-collected data to determine the best location to plant each tree.

The planting drones fire a biodegradable seedpod into the ground with pressurized air at each predetermined position at 120 seedpods per minute. They fly at an altitude of 3 to 7 ft. (1 to 2 m.) above the ground. A small pressurized canister provides the necessary propulsive force for the seedpods to easily penetrate the soil’s surface.

The seedpods are filled with a germinated seed, nutritious hydrogel, and other vital components. The pods break open upon impact allowing the germinated seeds to grow. These penetrate the earth, and, activated by moisture, grow into healthy trees.

Two operators equipped with 10 drones can plant 400,000 trees per day. Just 400 teams could plant 10 billion trees each year, with the capability to scale to tens of billions of trees annually. The fully automated and highly scalable BCE solution plants 150 times faster and 4-10 times cheaper than current methods. This technology provides a new tool enabling global enterprises and governments to meet their restoration commitments.

With initial funding in 2016, a patent “for automated planting” was applied for by Fletcher and his team. BCE began its full commercial operations with the first paid project in May 2017 at abandoned mine sites in Dungog in the Hunter Valey, New South Wales Australia that were in need of reforestation. They have executed nine projects in the UK, Australia, Myanmar, New Zealand, South Africa, and Morocco.

Environmentalists in Myanmar used to plant mangroves by hand. Myanmar has lost at least 2.5 million ac (1 million ha) of mangrove forest over the past several decades, making it more vulnerable to cyclones and climate change. Since 2012, Worldview has been able to plant over six million trees, which is a huge achievement already. However, with the help of the BCE drones, they could plant another four million by the end of 2019. Since the drones began their work in September, the saplings have grown to be 20 in (50 cm) tall.

In April 2018, BCE received a funding boost of US$2.5 million. The seed investment comes from SYSTEMIQ, a purpose-driven investment and advisory firm that aims to tackle economic system failures, and Parrot, the leading European drone group. Work in 2018 will expand to projects in the UAE, Canada, USA, Brazil, Peru, and Spain. Customers include private landholders, companies, non-governmental organisations, and governments.

In May 2018, Jeremie Leonard travelled to Canada to work with the Canadian Forest Service for the first-ever Canadian trial of using drones to plant tree seeds in northern Alberta. That year BCE changed its name to (Dendra Dendra is Greek for tree).

Dendra employs a combination of Wingtra and DJI M600 drones for pre-planting surveys as well as a custom Vulcan UAV for the seed spreading however much of the equipment they’re laden with has yet to be made available commercially.  Dendra’s largest mapping drone can carry up to 22 kilograms of equipment and its sensors can resolve images at 2-3cm per pixel.

This enabled Dendra to plant an additional 4 million mangrove seedlings in 2019 alone.

In September 2020, backing by At One Ventures, Airbus Ventures, Future Positive Capital, and Chris Sacca’s LowerCarbon, Dendra raised $10 million to continue its program whereby just 400 teams of two drone operators, with 10 drones per team, could plant 10 billion trees each year, and at a much lower cost than the traditional method of planting by hand. The target is to plant 500 billion trees by 2060, in often hard-to-reach places. (dendra.io)

Dendra are not alone. DroneSeed based in Seattle, Washington also committed to reforestation efforts, has developed a plan for each planting area that maximises successful planting and tree growth. Understanding the environmental conditions of the site is paramount to successfully replanting the area.

Using Lidar, topographical 3D maps are made, photographs are taken with a multispectral camera to collect visual data, much of it outside of the realm of human detection, which can then be used for an analysis of the plants and soil before any planting can take place.

Using this data, actual planting locations are determined so that each seed package has a much greater chance of survival. With the resulting map, the drones fly autonomously, as many as five at a time, and are supported by a team that is ready to load up the drones and there in case of any setbacks. The drones use machine learning models, setting out to find various ‘microsites’ where the seeds will face better chances of survival. The seeds are pre-packaged into small bundles, filled with nutrients, and covered in the chemical capsaicin to keep hungry creatures at bay. It is this extra attention to detail which improves the odds of each tree’s future success.

After planting, the location is monitored and growth is optimized with fertilizer, herbicide and water, all of which are also applied by the drones. In addition to gathering data needed for planting, drones are also collecting data on growth, canopy cover and other factors which allow the creation of 3D models of the actual reforested area.

DroneSeed founder, Grant Canary M.A. of Seattle, Washington is an environmentalist with a love of outdoor sports. He has spent his entire carrier working within for-profit companies to benefit the environment including Vestas Wind Energy and the US Green Building Council.

He raised US$10 million and built a 60,000 ft² factory to pioneer the commercialization of black soldier flies (Hermetia illucens) to treat food waste and produce a sustainable supply of nutrients for sustainable salmon feed and agricultural uses.

He also founded BioSystems LLC, a wholly owned subsidiary of Enterra, based in Portland, Oregon. At a loss for what to do next in his career and was told by a friend that perhaps he should just go and plant trees.

Realising that tree reforestation needed intensifying, Canary founded DroneSeed. He recruited Matthew M. Aghai as his Director of Biological Research;  John Thomson, a drone systems engineer, responsible for specifying, designing, and manufacturing heavy-lift flight systems and supporting hardware to enable company operations; and Robert A Krob, a software engineer.

They were soon joined by Matt Kunimoto, a drone systems technician who had built a hexacopter drone that uses image recognition to guide its flight autonomously in order to follow a custom pattern.

In 2015, DroneSeed first won the Beaverton, Oregon US$ 100,000 Challenge sponsored by the City of Beaverton and Oregon Technology and Business Center. Shortly after, they were one of the nine startups selected for Techstars Seattle 2016 out of over 1,000 applicants to the program.

With funding from Techstars, Social Capital, and Spero Ventures, to the tune of US$4.8 million, DroneSeed received the FAA’s first approval for up to five aircraft to be flown by a single pilot each carrying a 57 lb. (27 kg.) payload. The FAA classifies this exception as “precedent setting”, referring to the exceptional lengths DroneSeed has gone to prove out its ability to scale operations to larger payloads for multiple concurrent flights. At the time, no other drone operator in the USA could legally operate with such heavy lift aircraft.

The firm works for 3 of the 5 largest timber companies and recently signed a contract with The Nature Conservancy to restore post wildfire burn sites to combat the spread of wildfires and keep affected areas healthy. Their first planting project was in October 2018, replanting after the Grave Creek Fire which burned 2,800 ac (7,000 ha) near Medford, Oregon in 2018.

In 2018, the DroneSeed team was granted Patent N° 10,212,876 for “Aerial deployment planting methods and systems for making good use of recently obtained biometric data and for configuring propagule capsules for deployment via an unmanned vehicle so that each has an improved chance of survival.”

In 2019, following a massive wildfire in southwest Oregon DroneSeed were contracted by Northwest. Hancock Forest Management, a large international forest landowner and the Nature Conservancy Oregon to protect the ecosystem across the Pacific Northwest from invasive species. Drone swarms of up to five aircraft will be deployed to restore rangelands by re-seeding threatened areas, especially in sagebrush steppe habitats. Invasive weed species harm the sagebrush steppe, resulting in a huge swathe of plant loss. In fact, only 50 % of such plants still exist, with the remaining 50 % at risk of being lost in just the next 50 years. (droneseed.com)

NOW, founded by Jessica Jones, enables people to subscribe to support drone reforestation. Working with a nonprofit called Eden Reforestation Projects, the NOW will begin by supporting restoration projects in mangrove forests in Mozambique and Madagascar. But the company also began by planting trees itself using drones, beginning on tribal land near San Diego.

In 2020, Rashid Al Ghurair, founder of the Cafu fuel delivery app launched a mission to plant a million drought-tolerant Ghaf evergreen trees (Prosopis cineraria), across the UAE by drone within the next two years. On January 8th 2020, Al Ghurair dropped 4,000 seeds over 10,000 m² in pilot project in Sharjah Dubai If successful the project could be outsourced to wildfire affected regions like Australia and the Amazon. Each Ghaf tree can absorb 34.6 kg of CO² emissions per year.

Ultimately, hand-in-hand with humans, drones could help support much more massive tree planting, which would have a significant impact on climate change: researchers recently calculated that there is enough room to plant another 1.2 trillion trees, which could suck up more carbon each year than humans emit.

Discover Solution 269: Metal organic framework (MOF) for carbon capture

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Leave a comment