Categories
Planet Care

273: Robo bees

Problem:

The honey bee (Apis Mellifera), which pollinates nearly one-third of the food we eat, has been dying at unprecedented rates because of a mysterious phenomenon known as colony collapse disorder (CCD).

The crisis is generally attributed to a mixture of disease, parasites, and pesticides. If the bee disappeared off the face of the Earth, man would only have four years left to live. No more bees, no more pollination, no more plants, no more animals, no more man.

Solution:

In late June 2014, The White House gave a new task force just 180 days to devise a coping strategy to protect bees and other pollinators.


Inspired by the biology of a bee, researchers, led by engineering Professor Robert Wood at the Microrobotics Lab of the Wyss Institute, Harvard University, began developing Autonomous Flying Microbots aka RoboBees, man-made systems that could perform myriad roles in agriculture or disaster relief.

A RoboBee measures about half the size of a paper clip, weighs less than one-tenth of a gram, and flies using “artificial muscles” compromised of materials that contract when a voltage is applied. To construct RoboBees, researchers at the Wyss Institute have developed innovative manufacturing methods, so-called Pop-Up micro-electromechanical (MEMs) technologies that have already greatly expanded the boundaries of current robotics design and engineering.

A Robobee can lift off the ground and hover midair when tethered to a power supply. After two years of R&D, in 2016 the Wyss team announced that their Robobees can now perch on objects from any angle, using an electrode patch and a foam mount that absorbs shock to perch on surfaces and conserve energy in flight, like bats, birds or butterflies.

The new perching components weigh 13.4 mg, bringing the total weight of the robot to about 100mg, similar to the weight of a real bee. The robot takes off and flies normally. When the electrode patch is supplied with a charge, it can stick to almost any surface, from glass to wood to a leaf. To detach, the power supply is simply switched off.

But they still need to be able to fly on their own and communicate with each other to perform tasks such as a real honeybee hive is capable of doing. The researchers believe that as soon as 10 years from now these RoboBees could artificially pollinate a field of crops, a critical development if the commercial pollination industry cannot recover from severe yearly losses over the past decade.

RoboBees will work best when employed as swarms of thousands of individuals, coordinating their actions without relying on a single leader. The hive must be resilient enough so that the group can complete its objectives even if many bees fail.

The new generation four-wing hybrid RoboBee X-Wing can dive into water, swim, propel itself back out of water, and safely land. Although only one-quarter the weight of a paper clip, it still needs the extra lift provided by its two extra wings to carry its on-board electronics and six tiny solar cells.

Since the robot is untethered unlike other similar robotic insects, it gets its power from the sun — or from powerful lamps, which the researchers used during their tests. The solar cells generate 5 volts of electricity, and a small onboard transformer turns it into the 200 volts of electricity the RoboBee needs to lift off. That voltage causes the bee’s piezoelectric actuators to bend and contract such as the real insect’s muscles would, leading to the flapping motion of the robot’s wings. (wyss.harvard.edu)

Even though the X-Wing does not need a tether, it still cannot be deployed in real missions. For one, it requires light three times the intensity of our sun to be able to generate the power it needs. In addition, it does not work when it is not directly under the light and could only fly for a second or two during testing until it veers out of view. The researchers need to equip it with a power storage solution so it can fly in the dark. But that would make it heavier.

In 2017, Eijiro Miyako, a researcher at Japan’s National Institute of Advanced Industrial Science and Technology, developed a drone to deliver pollen between flowers. The bottom is covered in horsehair and coated in a special sticky gel. When the drone flies onto a flower, pollen grains stick lightly to the gel, and then rub off on the next flower visited. (aist.go.jp)

In March 2018, Walmart filed a patent for autonomous, pollination drones. In 2019, scientists at the Tomsk Polytechnic University (TPU) Russia launched a robo-bee prototype at least seven times bigger than real bees, or the size of a human palm.

Another approach was taken by Anna Haldewang, a 24-year-old industrial design student at Savannah College of Art and Design (SCAD) in Georgia, USA. Haldewang created 50 designs of a bee drone before landing on the final model, Plan Bee, which does not resemble a bee at all.

The drone consists of a foam core, a plastic-shell body and two propellers. There are also six sections of the drone that meet at the bottom, all of which have tiny holes that let the machine gather pollen while it hovers over plants. It can then release the pollen at a later time for cross-pollination.

Haldewang noted that Plan Bee is still in its early stages, but she has filed a patent for the technology and design. Its application in backyards as a teaching tool has potential, but the drone could conceivably be used in large-scale farming, even in hydroponic farming.

Discover Solution 274: SeaBin

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Leave a comment

Translate »
%d bloggers like this: