Categories
Energy Mobility

213: Molten Salt Reactor Ship

Problem:

Over the coming decades, as many as 60,000 ships must transition from combustion of fossil fuels to zero-emission propulsion and reduce emissions by 50% of the 2008 total, before 2050. T

Solution:

Microsoft co-founder Bill Gates, Chairman of TerraPower nuclear tech company in Washington has linked up with Mikal Bøe’s London-based Core Power, French nuclear materials handling specialist Orano and American utilities firm Southern Company to develop Molten Salt Reactor (MSR) atomic technology in the USA with the potential for use in commercial shipping.


The team including Rob Corbin of TerraPower and Giulio Gennaro of Core Power has submitted its application to the US Department of Energy to take part in cost-share risk reduction awards under the Advanced Reactor Demonstration Program, in order to build a prototype MSR as a proof-of-concept for a medium-scale commercial-grade reactor.

Their solution will be using a fluid fuel in the form of very hot fluoride or chloride salt typically composed of beryllium-fluoride (BeF2) and lithium-fluoride (LiF), infused with high-assay low-enriched uranium (HALEU), a ‘hot’ fissile material instead of solid fuel rods which are used in conventional pressurized water reactors (PWRs).

They have no moving parts, operate at very high temperatures under only ambient pressure, and can be made small enough to provide ‘micro-grid-scale’ electric power for energy-hungry assets, like large ships.

For this reason, they can be mass-manufactured to bring the cost of energy in line with existing fuels.
MSRs are walk-away safe. The fuel salts for MSRs work at normal atmospheric pressure, so a breach of the reactor containment vessel would simply leak out the liquid fuel which would then solidify as it cooled.

Bjørn Højgaard, the CEO of Hong Kong ship manager Anglo-Eastern (www.angloeastern.com) has commented “I think that in 50 years nuclear molten-salt-reactors will be par for the course in the shipping industry, and we will look back at the current time and wonder why we dabbled in alternative pathways for greenhouse gas-free propulsion.”

Ports will also be able to use energy from ships installed with m-MSR to power equipment and machinery while the ship is at berth, through reverse cold ironing. Power generated by m-MSR will be cost competitive when compared to terrestrial energy sources available to the port.

Discover Solution 214: lithium from thermal waters

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Mobility

197: Elon Musk’s Hyperloop

Problem:

Any effort to increase mass transit decreases energy consumed by invidual vehicle owners. Most rail transit uses electrical energy.

Solution:

In 2013, Tesla electric sportscar maker, Elon Musk re-invented a passenger train that would be faster than trains, safer than cars and much less damaging to the environment than aircraft. He called it Hyperloop.


It incorporates reduced-pressure tubes in which pressurized capsules, travelling at up to 620 mph (1000 kph) ride on air bearings driven by linear induction motors and axial compressors. Musk proposed a route running from the Los Angeles region to the San Francisco Bay Area, roughly following the Interstate 5 corridor.

An agreement was signed in 2017 to co-develop a Hyperloop line between Seoul and Busan in South Korea. Although Musk originally envisaged his Hyperloop system being used by cars and personal pods, in 2018 he announced that instead it would give first place to pedestrians and cyclists.

The tunnels would still transport cars, but only after all personalized mass transit needs have been met. His Boring Co. urban loop system would have 1000’s of small stations the size of a single parking space that take the 124 mph (200 kph), midibus rider very close to their destination & blend seamlessly into the fabric of a city, rather than a small number of big stations such as a subway.

Where the Hyperloop differs from high-speed rail is that Musk has proposed scattering Hyperloop entrances along connecting cities more akin to subway stops rather than train halls, and that it was more for “personal transit”. The downside would that the machines building Hyperloop will use more electricity.

On November 8th 2020, the renamed Virgin Hyperloop made its first 100 mph passenger carrying trial at the company’s DevLoop test track in the desert outside Las Vegas, in the Nevada desert. The first two passengers were Virgin Hyperloop’s chief technology officer and co-founder, Josh Giegel, and head of passenger experience, Sara Luchian.

Parallel to Musk’s Hyperloop, China is building an experimental maglev train which by using vacuum-sealed tunnels, would reach speeds of more than 620 mph.

The prototype, laid in the central province of Hubei in early 2020 will be capable of reducing time from Hubei’s capital city, Wuhan, to the near-coastal city of Guangzhou, to just under two hours for a distance 1,367 mi. (2,200 km.). Hubei expects to start testing 124 mi (200 km.) sections of these vacuum tunnels in 2020 to “to verify the cutting-edge, high-temperature superconducting maglev theory and ultimately push the speed limit to 620 mph ( 1,000 kph).

Discover Solution 198: Hydrogen home batteries

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Mobility Planet Care

192: Ships that cool ocean waters

Problem:

Of climate catastrophes, hurricanes have caused by far the most damage. The cost of an average hurricane is US$21.6 billion and total damage from hurricanes hitting the U.S. between 1980 and April 2018 totals US$862 billion.

Solution:

Prevent hurricanes by cooling the warming ocean waters that allow and encourage them to form.


While casualties from hurricanes since 1900 have numbered from a handful of fatalities to deaths in the low hundreds, Hurricane Katrina in 2005 is by far the costliest and most devastating storm in U.S. history, causing 1,833 deaths and an estimated US$160 billion in damage.

After observing the damage wrought by Katrina, Stephen Hugh Salter, an emeritus professor of engineering design at Scotland’s University of Edinburgh, began to study how to disperse hurricanes.

For ocean temperatures, the magic number for hurricane formation is 26.5° C (79.7° F). So what if you could nudge that number down early on and reduce the risks and intensities of ensuing storms?

To cool the surface of the ocean, Salter invented a wave-powered pump that would move warm surface water down to depths as far as about 650 ft. (200 m.).

It would be made from a 150 – 330 ft (50- 100 m.) diameter ring of thousands of tyres lashed together to support giant plastic tubes which extend 300 ft (100m) deep into the ocean.

The naturally working pumps would be located in “hurricane alley”, the warm corridor in the Atlantic through which the most damaging storms typically develop and pass. Salter estimated that about 150-450 of these structures would be required. They would drift around and send out radar signals so that no one would collide with them.

What became known as the “Salter Sink” was first presented to the US Government in 2005 at a post-Katrina US Homeland Security meeting on hurricane suppression.

It was picked up and developed by Intellectual Ventures, a Seattle-based new tech company led by former Microsoft chief technology officer Nathan Myhrvold. Despite devastating hurricanes such as Dorian (September 2019) which destroyed the Bahamas, the Salter Sink” system has still not been trialled except with 1/100 scale wave tank tests.

Stephen Salter’s other tactic for fighting hurricanes is making clouds a tiny bit brighter using aerosols, harnessing a phenomenon called the Twomey effect.

Twomey observed that for clouds containing the same amount of moisture, the clouds with smaller suspended water droplets reflect more sunlight.

The increased sunlight reflectance in the sky would keep the waters below from warming up to the hurricane threshold while also curbing evaporation, thereby reducing the atmospheric moisture needed to make a storm.

Working with John Latham, Salter proposes a fleet of around 1,500 unmanned Rotor ships, or Flettner ships, that would spray mist created from seawater into the air at a rate of approximately 1760 ft3 (50 m³) per second over a large portion of Earth’s ocean surface.

The large-scale test would affect an area of 10,000 km². The power for the rotors and the ship could be generated from underwater turbines. Subsequent researchers determined that transport efficiency was only relevant for use at scale, and that for research requirements, standard ships could be used for transport.

Salter estimated that it would cost US$40 million to construct a prototype cloud seeding system but has not been able to find any public or private takers.

Despite this, since 2012, a Marine Cloud Brightening Project (MCBP) team has been meeting on a weekly basis at a lab in Sunnyvale, California. In 2017 Salter held talks with major Scottish engineering firms Ferguson Marine Port, Glasgow and Clyde Blowers about building his spray vessel ‘weather machines’. A prototype is still to be built and tested.

“If we can put them in the right place at the right time, 300 ships spraying 10 cubic m. a second would put sea surface temperature back to where they used to be.  We would need a few thousand is we are criminally stupid enough to double CO₂.” Said Salter in 2019.

Meanwhile, a wind engineering team led by Arindam Gan Chowdhury and Andrew W. Conklin at the International Hurricane Research Center (IHRC) and College of Engineering and Computing (CEC) at Florida International University has been working at a full-scale large 12-fan “Wall of Wind (WoW) facility, testing building materials and designs against Category 5 hurricane-strength winds on the Saffir-Simpson Hurricane Wind Scale.

The Wall began with two fans, then six fans and finally twelve fans able to simulate wind-driven rain. Current WoW projects, funded by federal and state agencies and by private industry, are offering focus and leadership in the urgently needed hurricane engineering research and education from an integrative perspective to quantify and communicate hurricane risks and losses, mitigate hurricane impacts on the built environment, and enhance sustainability of infrastructure and business enterprise, including residential buildings, low-rise commercial buildings, power lines, traffic signals, etc. s.

The team has a patent pending for a new type of roofing material. Additionally, recommendations made as a result of Wall of Wind testing were published in the 2010 Florida Building Code. The new code provisions are geared toward decreasing the vulnerability of roofs and rooftop equipment.

Discover Solution 193: underground rivers and hydro dams

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Mobility

187: Horses

Problem:

For the past two hundred years, most forms of mechanical transport have required fuel brought from a distance and artificially made. When that fuel runs out they come to a halt, as they do in extreme weather conditions such as heavy snow or floods.

Solution:

The horse.


For the past 4,000 years horses have been used for transport. Regarded as a unit of transport energy, one standard horse has an average height of 4.6 to 6 ft. (1.4 to 1.8 m) at the withers, or 15-16 hands. It is capable of a peak power production of 14.9 horsepower. It weighs about 1,000 lbs (454 kg.) and eats 2% of its body weight in dry feed a day or 20 lbs (9 kg.). It will drink 5 to 10 gallons (20 to 30 liters) of fresh water per day.

The Pony Express horses worked 25 mi. (40 km.) a day maximum. Assuming that a horse can average 25 mi. (40 km) a day every day, this works out to a horse going 1.25 mile/pound of feed. Galloping, a horse can reach top speeds of 25-30 mph (40 – 48 kph) for 2 mi. (3.2 km). While a horse may be exhausted after a three-mile (5 km) gallop, that same horse could trot, with a few walk breaks, 15 mi. (24 km) without extraordinary strain.

The electrical unit the watt was calculated from Horsepower and there are 740 watts in one horsepower. A horse can travel over most terrain, including thick snow and rivers. A horse deprived of feed, but supplied drinking water is capable of surviving 20 to 25 days. It has a working life span of 18 years (6,000 recycles). Well treated, it is very user friendly and becomes a companion. It is biodegradable, recyclable and, for some, edible. One or more horses interlinked, like batteries, can provide multiple energy to tow a passenger vehicle.

Aside from therapy, leisure and sport, the horse is a solution for our Planet. Since 1993, the French towns of Rennes, Millau, Nouvoitou, Rambouillet, Saint-Pierre-sur-Dives Cabourg, Grand Quevilly and Paris (at the Bois de Vincennes) have come to use “territorial horses” (cart horses) to take schoolchildren to and from school and to collect trash.

In 2011, around 100 French municipalities were using at least one territorial horse, but by the end of the following year, this number had grown to about 200, while by 2019 that figure stood at 250. In Vendargues in the Hérault, three Hippobuses are in regular service for schoolchildren.

Since 2009, Ramon Garcia, founder of “Aequitaine”, near Sainte-Foy-la-Grande, south-west France, manages a stable of 23 horses which can be rented out to plough the surrounding vineyards of the region. Their lighter weight is better for the vines than mechanical tractors.

Since October 2004, two Brittany horses haul barges loaded with industrial slag along the River Marne twice a day, five days a week, eliminating seven trucks daily, reducing noise pollution, pollutant emissions and the risk of accidents.

Police on horseback, including the United States Border Patrol, the Royal Canadian Mounted Police, the Mexican Rurales, the British South African Police, and the Turkish/Cypriot Zapiteh are employed for specialized duties ranging from patrol of parks and wilderness areas, where police cars would be impractical or noisy, to riot duty, where the horse serves to intimidate those whom it is desired to disperse through its larger size, or may be sent in to detain trouble makers.

Discover Solution 188: Zero emission hospitals

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Materials Mobility

171: Light weight glass bottles

Problem:

Heavy glass requires more energy to transport it.

Solution:

In 2013 Rawlings of Bristol, England, the leading independent glass packaging specialist, with a strong heritage and reputation for sustainable quality, was selected by social enterprise Belu.org to deliver on the challenge of developing the lightest weight glass bottle for mineral water in the UK.


Belu was founded in 2004 by film maker Reed Paget as an environmentally friendly bottled water business. Reed launched the UK’s first compostable plastic bottle in 2006. Now Belu want to take the next step.

In the 1950s, S. Donald Stookey of the Corning Glass Works had accidentally invented Vitrelle, a lightweight tempered glass product consisting of two types of glass laminated into three layers, which could be used not just to make the nose cone of a missile but also to contain a casserole in both a refrigerator and hot oven. A typical Corelle dinner plate measured 10 in (26 cm) in diameter and weighs 12.5 ounces (355 gm).

Rawlings now teamed up with Owens-Illinois (O-I) in Toledo, USA who had developed a revolutionary new process that substantially reduces the amount of glass needed to reduce the weight of the previous lightweight 1.6 pint and 0.6 pint (750 ml and 330 ml) bottles both by 7 oz (20 g). Rawlings trademarked this as Ethical Glass.

To translate this weight saving into potential environmental gains, Belu have been able to save 937 tons (850,000 kg) of glass annually, equivalent to 2.1 million wine bottles and reduce their carbon emissions by 11%, the equivalent to saving the same amount of carbon associated with 7,000 nights in an average-sized UK hotel.

In addition to the bottle’s impressive environmental credentials, a royalty of up to 4 cents has been donated to WaterAid for each bottle purchased from Belu so enabling the company to generate over US$ 6,350,000 (£,500,000) helping more than 38,000 people without water.

Ethical Glass has not been retained exclusively for Belu – it is also being made available to other mineral water companies in a bid to lower the industry’s carbon footprint. (rawlingsbristol.co.uk)

Verallia which produces about 16 billion glass bottles and pots for 10,000 clients around the world have produced their Ecovà range up to 30% lighter in weight. With the production of a billion containers, Ecovà has saved 100,000 tons (91,000 tonnes) of raw materials and has reduced CO2 emissions by about 18%, including transportation.

Another approach is to make the glass (literally) greener.

Glass produced from recycled scrap (or “cullet”) creates 20% less air pollution and 50% less water pollution than glass made from raw materials. According to a study conducted by the Waste and Resources Action Programme (Wrap), switching from clear glass to green cuts packaging-related CO2 emissions by 20%.

This is due to the higher recycled content in green glass bottles, which is as much as 72.4%, against an industry standard of 28.9%. The study also revealed that bottling gin, white wine and brandy in green glass had a negligible impact on consumers’ perception of taste, and increasing the recycled content of the glass actually improved consumers’ opinion of both retailers and the products.

Discover Solution 172: Bottle factory

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Mobility

160: “flygskam”

Problem:

Carbon dioxide emissions of aircraft only account for about 2 per % is much bigger, because planes emit other gases that have a warming effect, including nitrogen oxide and contrails (those white tails of frozen water vapour visible from the ground).

Solution:

“flygskam” is a Swedish word meaning flight shame, the intention being to discourage travellers from using airflights when they can take a ship, a train or even sustainable car-pooling, so lowering carbon emissions. They can then use the word “tågskryt or “train brag”


The idea was originally championed in 2017 by Olympic biathlete Bjorn Ferry who estimated that during his sporting career he was travelling 180 days of the year, totalling around 25,000 mi (40,000 km) per year by plane and another 25,000 by car or minibus — and around 16 tons of CO2 emissions per year. After realising his impact Ferry he publicly committed to ditching air travel completely.

Ferry’s campaign to promore flygskam gained momentum after teenage activist Greta Thunberg’s mother, the opera singer Malena Ernman, publicly announced she would stop flying, with various Swedish celebrities following suit.

Thunberg herself travelled travel to events and conferences by train. She also took two weeks to travel from England to the UN Climate Action summit in New York, by the Malizia II, a solar-powered yacht.

Exact numbers are hard to estimate, but the Tagsemester Facebook page, set up by entrepreneur and environmentalist Susanna Elfors to give people tips and information on how to cut back on air travel in favour of rail travel, has around 80,000 active users. Swedish rail company SJ AB reports that twice as many Swedish people chose to travel by train instead of by air in summer 2019 compared with the previous year

From January 2020, Coronavirus had the disastrous effect of seriously reducing the commercial air flights, ironically creating a similar positive effect for air quality and the flyskam movement.

Satellite data collected by the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) and shared by NASA’s Earth Observatory showed a steep decline in nitrogen dioxide levels across the Planet.

The “flight shame” movement—vliegschaamte in Dutch, flygskam in Swedish, and flugscham in German—has lured some travelers back to the rails. French,  Dutch and German lawmakers are discussing bans on short domestic and international flights served by high-speed trains.

Germany has cut rail fares by 10% to encourage ridership, and the country’s Green Party is pushing to end the tax exemption on aviation fuel in favor of increasing funding for train travel. Traveling by rail cuts emissions by 70% to 90% compared to flying.
Sweden’s rail authority will run more overnight sleeper trains to serve passengers skipping airlines amid escalating climate concerns.

The new offering by Trafikverket will dispatch trains from Malmö, Sweden in the evening, scoop up more passengers an hour later Copenhagen, and arrive in Cologne, Germany at 6am. Onward connections from there will allow passengers to arrive in London, Paris, Munich, and Amsterdam before lunchtime.

After nearly two decades, the Brussels-to-Vienna overnight train by Austrian Railways (ÖBB) is rolling again. ÖBB now plans to expand hotel-like amenities on its 27 overnight train routes by 2022, with more coming.

In France, activists saved a beloved sleeping-car route between Paris, Perpignan and the Spanish border town of Portbou, according to Nicolas Forien, a member of both Back on Track and the French group Oui au Train de Nuit (“Yes to the Night Train”).

What you can do: Only use flights for journeys which are impossible for land transport.

Tomorrow’s solution: drinking from the fog

Discover Solution 161: Drinking water from fog

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Mobility Materials

148: Fibreglass boat recycling system

Problem:

Since fibreglass or glass-reinforced plastic (GRP) boatbuilding began in the late 1950s, there has been a steady accumulation of unrecyclable old hulls all over the yachting world, numbering in the millions. Some will be crushed and buried in landfills; others are simply abandoned on land, often in boatyards or dealer service yards, or left as derelicts along waterways, where they can harm the environment.

Solution:

In 2007-2008 in the UK several trials were undertaken through the BeAware project (Built Environment Action on Waste Awareness and Resource Efficiency) to incorporate GRP waste into pre-cast concrete and rubber products.


With grinding, dimensions of the small resulting pieces ranged from 1 in (2.5 cm) to powder. That material could then be then be integrated into cement and therewith, be used in constructions.

The clinker was ground to form cement. Alumina and silica also have cementlike properties in an alkaline environment and are typically present in Portland cement at about 25%, and in much higher proportions in cement alternatives from fly-ash and slag. Boron, which is found in most E-glass, can cause a reduction in early strength during the setting of cement, but as long as proportions are kept low it is not considered a problem.

In 2010, Fiberline Composites of Middelfart, Denmark, a manufacturer of fibreglass and carbon fibre profiles signed a contract with two companies: Zajons in Germany, which specializes in converting waste to alternative fuels for industry and Holcim (Germany), subsidiary of the world leading cement manufacturer from Switzerland.

Under the contract, surplus fibreglass from Fiberline’s production in Denmark will be shipped south for use as a key constituent of cement. This breakthrough soon came to be used in other European countries, with an initial 10,000 hulls processed and recycled as part of several national and multinational marine industry programs.

Researchers at Windsheim University in the Netherlands have been testing out the re-use of such material to make piling sheets.

More recently both initiatives have begun in Canada and the USA. Transport Canada is financing Jeosal Materials Research Corporation working with Queen’s University at Kingston, Ontario, under the Canadian Plastics Innovation Challenge to develop a possible solution for recycling fibreglass.

In New York State, the Rhode Island Marine Trade Association (RIMTA) has launched a Fiberglass Vessel Recycling Pilot Project, partnering with local boatyards for dismantling and crushing 22 to 33 tons (20 to 30 tonnes) of fiberglass for use by cement industry partners in South Carolina. While it is important to note that the RIFVR Pilot Project is just taking its nascent steps, if things go well, the project could eventually be rolled out regionally and nationally.

What you can do: Tell coastal and estuary authorities that they can now recycle abandoned fibre-glass hulls.

Discover Solution 149: Recycling wind turbine blades

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Carbon Capture Mobility

141: Ethanol from CO2

Problem:

We are putting too much carbon into our atmosphere.

Solution:

A process for reducing CO₂ by converting it to ethanol has been developed by Michael Köpke at LanzaTech in Skokie, Illinois.


In 2009, Köpke obtained his PhD in microbiology and biotechnology at the University of Ulm, Germany, specialising the genetic engineering of gas fermenting organisms.

His pioneering research on Clostridium ljungdahlii demonstrated for the first time that gas fermenting acetogens can be genetically modified and provided a genetic blueprint of such an organism.

Köpke joined LanzaTech in Auckland, New Zealand, developing converting waste carbon monoxide emitted from factories into ethanol and other chemicals. LanzaTech’s carbon recycling technology is such as retrofitting a brewery onto an emission source such as a steel mill or a landfill site, but instead of using sugars and yeast to make beer, pollution is converted by bacteria to fuels and chemicals.

This is revolutionizing the way the world thinks about waste carbon by treating it as an opportunity instead of a liability.

In its first year, LanzaTech’s first pre-commercial plant in China produced over 100,000 gallons (380,000 liters) of ethanol from steel mill emissions that can be converted into aviation kerosene, plastic and products. This earned it an internationally recognized sustainability certification from the Roundtable of Sustainable Biomaterials in 2013.

Additional facilities may be built in California, Belgium, India, and South Africa. Together, they could produce about 77 million gallons (26 million litres) of ethanol per year from carbon waste.

In 2018, LanzaTech began testing a low carbon fuel for airplanes, which was used to fuel a Virgin Atlantic flight from Orlando to London. Initially its biofuel for Virgin only accounted for 6% of the fuel mix.

The company aims to officially launch its new LanzaJet product in 2019, which could be a potential solution for the airline industry to reduce its waste.

LanzaTech claimed it could have three gas-to-ethanol plants ready in the UK by 2025 if it secured the necessary airline customers and government backing, producing about 125 million gallons (473 million liters) of SAF a year.

In November 2019, after three years of collaboration, ExxonMobil and FuelCell Energy, Inc. signed a new, two-year expanded joint-development agreement to further enhance carbonate fuel cell technology for the purpose of capturing carbon dioxide from industrial facilities.

The agreement, worth up to US$60 million, will focus efforts on optimizing the core technology, overall process integration and large-scale deployment of carbon capture solutions. ExxonMobil is exploring options to conduct a pilot test of next-generation fuel cell carbon capture solution at one of its operating sites.

Discover Solution 142: Ethical banks

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Energy Mobility

134: Energy roads


Problem:

Highways and roads only use up energy to build and to maintain.

Solution:

Engineers from Lancaster University, UK, are working on ‘piezolectric’ ceramics that when embedded in road surfaces would be able to harvest and convert vehicle vibration into electrical energy. The research project, led by Professor Mohamed Saafi, will design and optimise energy recovery of around one to two kWs per kilometre under ‘normal’ traffic volumes—which is around 2,000 to 3,000 cars an hour. The system developed will then convert this mechanical energy into electric energy to power things such as street lamps, traffic lights and electric car charging points.


In Portugal, an energy road system called ESPHERA has been financed by the Centre for the Innovation of Smart Infrastructures, founded by Ferrovial, the Castile-La Mancha regional government and the University of Alcalá. Ferrovial is also in charge of technical coordination for ESPHERA, which has benefitted from the collaboration of Cintra (the motorway subsidiary company of Ferrovial) and the Aravía Company, who hold the concession for the maintenance of the section of the A-2 motorway between Zaragoza and Calatayud. (ferrovial.com)

In 2016 the California Energy Commission (CEC) approved a pilot program in which piezoelectric crystals were installed on several freeways.

Scientists estimate the energy generated from piezoelectric crystals on a 10 mi (16 km) stretch of freeway could provide power for the entire city of Burbank (population: more than 105,000). Italy signed a contract to install this technology in a portion of the Venice-to-Trieste Autostrada.

China’s first solar highway was built by Pavenergy and Qilu Transportation in eastern China’s Shandong province on a section of one of the most highly-trafficked areas, the Jinan City Expressway ring road, stretching for 1.2 mi. (2.4 km) with an area of 63,234 ft² ( 5,875 m²).. The test section proved capable of holding middle size vans with strong friction. Engineers then added wireless vehicle charging into the panels. It opened in December 2017.

In 2019, engineers from the Virginia Polytechnic Institute and State University (Virginia Tech) found a way to 3D print piezoelectric materials, so tailoring the architecture to make them more flexible able to wrap them around any arbitrary curvature.

What you can do: Drive along energy roads once they have been installed

Discover Solution 135: Honeybee inspired energy reduction

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Energy Mobility

133: Energy paths

Problem:

With the transition from fossil fuel to electrical energy, the exponential demand will need the widest variety of sources.

Solution:

Another clean system for generating electricity makes use of piezo materials (usually in the form of the mineral quartz, topaz, or lead zirconate titanate), where the simple act of walking or jumping or driving a vehicle over a surface can generate electricity.


This challenge has been taken on by Laurence Kemball-Cook, an undergraduate studying Industrial Design and Technology at Loughborough University, England. Following the publicity generated by a short demonstration film of his PaveGen tiles posted on his website Kemball-Cook, was awarded US$ 13,000 prize and struck a US$ 250,000 deal with one of the largest urban shopping centers in Europe, Westfield in London. PaveGen received orders from at Heathrow Airport”s Terminal Three and entered into collaboration with the US government.

In Lagos, Nigeria, the tiles have been installed under a soccer field, enabling players to light up the entire field during a match. A second generation of PavGen tiles is triangular in shape, with a generator in each corner to maximize energy output. In addition to power generation, PaveGen can use Bluetooth to connect to smartphone applications and the system can also communicate with building management systems.

Caveat to this solution is that when the PaveGen is not being walked on it does not generate energy, this problem occurs if the tile is placed somewhere that is crowded but at times does not receive any people on it which causes it to not generate energy. But this problem can be largely avoided by just placing the tiles in places that always receive people such as the subway stations of New York or other similarly crowded cities.

At the NASA Kennedy Space Center’s Visitor Complex at Cape Canaveral, Florida, in 2017, Ilan Stern, a senior research scientist with the Georgia Tech Research Institute, and colleagues, collaborated on a project supported by NASA contractor Delaware North Corporation to build a 40,000 ft² (3,700 m²) lighted outdoor piezoelectric footpath.

What you can do: Tell town councils near you about energy paths, wand walk along them whenever possible

Discover Solution 134: Energy roads

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Mobility

125: Electric boat as microgrid

Problem:

After a hurricane of Category 4-5, the entire population of a devastated island has no electricity.

Solution:

An electric boat as microgrid.


When the first 12 pax solar boats were built in 1995 by MW-Line in Yverdon-les-Bains, Switzerland, the 75ft (23 m) Solifleur and Chlorophylle were operated by Pro Natura for nature excursions on the Lake of Neuchâtel.

Suggested and implemented by Theodor Schmidt, these were the first solar boats to be fitted with a mains connection in order to feed extra solar energy into the 230V grid when the boats are not being used.

Twenty-four years later, researchers at the University of New South Wales in Sydney, Australia created an system that can theoretically turn electric boats into small renewable power plants. They tested the algorithm with a microgrid in their lab, using four 6-volt gel batteries connected in a 24-V series as a stand-in for a boat. To implement this approach, they would need an electric boat with its own PV system, which would charge the boat’s batteries when the boat was moored.

Then when the boat is docked, it could act as a small power plant, providing electricity to homes on an island. If Indonesia, for example, were hit with a natural disaster, those microgrids could be destroyed.

Even Indonesia’s widely electrified islands may be impacted. With the new approach, the Indonesian government could use the boats it sent with food and supplies to also provide power. In their experiment, they found that the algorithm could manage power flows reliably enough to allow electric boats to provide peak load support to a grid directly after a trip.

With the algorithm in place, boat owners could decide when to sell electricity, and how much they wanted to sell. They might, for example, set their system to automatically sell 10 % of its stored energy, and only if the batteries are at least halfway charged. Boats are uniquely positioned to provide this kind of service, the researchers point out. Electric cars do not generally have their own PV system.

So instead of adding power to the grid such as a boat could, electric cars draw from it. The proposed technology works pretty similarly to the microgrids that are gradually rolling out in Indonesia. Those microgrids also contain PVs to collect energy and li-ion batteries to store it, but there is . one key difference: portability.

When some natural disaster occurs in dispersed islands, the electricity networks or generation systems are heavily damaged, and residents live without electricity for weeks. In this case, consumers having this technology can immediately get their power.

The concept is still in its infancy, but the University of New South Wales team expects to get its algorithm out of the lab and into the ocean by testing it with an actual electric boat in the near future.

Discover solution 126: Electricity from microbes

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Mobility Planet Care

104: Drones for agriculture

Problem:

Globally, farmers spend over $40 billion per year on pesticides and herbicides (weed killers) to avoid an estimated total of $200 billion in crop loss annually caused by pests. About 200,000 suicides each year are indirectly attributed to pesticide poisoning, almost all in developing countries.

Solution:

Precision-spraying drones


Farmers are using infra-red camera carrying drones to pinpoint problem spots with insects and aphids in vast fields and ranchlands. This is based on the mapping, another drone then drops a ‘cocktail’ of predatory insects, transported in a sock attached the underbelly of the drone and containing a mixture of vermiculite and insects onto grape vines and citrus trees to combat pests. By focalizing pest control, they prevent spread and save money.

After a successful joint venture, in January of 2018 SkySquirrel Technologies and VineView Scientific Aerial Imaging merged to form VineView. VineView drones can check 50 acres of vineyards in 24 minutes for telltale signs of mold, bacteria or other diseases.

The system is used in two of the world’s top wine regions – California and France.

For herbicide-free weedkilling, in 2010 Gaëtan Séverac, PhD student in robotics teamed up with Aymeric Barthès, one of his classmates at the Institut Méditerranéen d’Etude et Recherche en Informatique et Robotique (IMERIR) to develop an all-terrain weeding robot.

OZ, their prototype used a satellite positioning algorithm with a precision of 4 cm called PPP-CNES, (PPP meaning Punctual Positioning Specific).

In 2011 Séverac and Barthès founded their startup, Naïo Technologies in Toulouse. Soon after, field trials were carried out on two vegetable farms and a vineyard in the Occitania region.

From 2015, Naïo Technologies organised a « Move Your Robot » national contest opened to engineering colleges and universities, with the objective of improving the OZ guidance programs.

For example, in 2016, participants proposed a power supply solution with a solar panel adaptable to the robot, a touch-screen human-machine interface, a soil analysis laboratory embedded on the robot, a voice guidance system and a gun noise to scare birds.

By 2016, a growing number of OZ weedkillers were being used by customers anxious to get away from products like Monsanto’s Roundup (glyphosate).

Naïo next produced TED, a vine-straddling robot weedkiller, trialled by Bernard Magrez up and down the vines of his Château Fombrauge (Saint-Emilion Grand Cru Classé), then by Philippe de Rothschild on his vineyard.

Measuring 1m80 wide by 2m high, equipped with a GPS, the electric 4WD TED is able to leaves the wine warehouse to go directly to the plot, programmable to work according to the weather, and to make several passes.

Naïo Technologies’ next machine was Dino, a straddle robot for the mechanical weeding of vegetable plantations. It is particularly suitable for salad crops, which it weeds mechanically and autonomously thanks to its hoeing and guiding tools. Bob, the fourth option runs on caterpillar tracks.

In December 2018 the fourth FIRA International Forum of Agricultural Robotics was held over two days at the Diagora center in Labège. Organized by Naïo-Technologies, it hosted more than 800 delegates from around the world. This sector is evolving, with projects of all shapes and sizes.

What you can do: Tell local farmers about drones.

Discover solution 105: Batteries in a shipping container

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Carbon Capture Energy Human Effort Materials Mobility Planet Care Your Home

Solution 100

Solution:

100 days ago, on September, 1, 2020,  we began publishing one solution per day about cleaning up, repairing and protecting our Planet, with the bottom line of “What you can do!” If you look at our growing Encouragements page, you will see several approving comments for our simple approach. We welcome comments for all who visit our pages, not only on this website, but also your “likes” on our dedicated Facebook page, and you can also find us on Instagram and Twitter.

Onwards to 200 solutions!
Kevin, Jeff, Helen and Josh

What you can do: Follow and share 366solutions and tell your friends about ways we all can clean up, repair and protect our planet!

Discover solution 101: Documentary films to make us aware

 

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Mobility Your Home

96: Delivery vehicle, door-to-door

Problem:

Continuing to use cars to individually travel to and from supermarkets to buy weekly provisions is not eco-efficient.

Solution:

The door-to-door delivery vehicle


As long ago as August 1967, the UK Electric Vehicle Association put out a press release stating that Britain had more battery-electric vehicles on its roads than the rest of the world put together. All manufacturers of battery electric vehicles were, at one time, members of the Electric Vehicle Association of Great Britain, and they received returns from the manufacturers on a regular basis, so they were able to give accurate numbers of BERVs in use in the UK for a certain year.

The EVA also had industrial truck manufacturers, battery manufacturers and component suppliers as members of the Association. Closer inspection disclosed that almost all of the 30,000 battery driven vehicles licensed for UK road use were milk floats or door-to-door delivery vehicles, the final link from electric milking machines at the dairy farm.

This link continues today with the addition that instead of the milkman taking orders and being paid at each doorstep, the client can command pay for their groceries on-line.

In 2012, a startup calling itself Picnic was formed by a team of IT specialists, led by Joris Beckers, Frederik Nieuwenhuys, Bas Verheijen and Michiel Muller in Amersfoort, the Netherlands. Backed by these four investors, it planned to come up with a new business that would be able to gain a position in a market dominated by giant companies in the grocery market.

The idea was simple. Clients ordered their dairy products and groceries using an on-line App-only which would then be delivered for free within a one-hour timeslot of their choice, using an electric truck with a 68 mi (l10 km) range called the E-Worker, built by the French company Goupil. Starting off with 150 customers in Amersfoort, by 2016 Picnic was serving over 30,000 households in several cities in the middle of the Netherlands.

In March 2017, having received US$110 million (€100 million) in funding, Picnic announced an aggressive expansion in the years ahead, including 5 new warehouses,70 distribution hubs, and the procurement of a staggering 2,000 electric delivery vehicles.

In 2018 Picnic entered the German market, selecting Kaars, Neuss, Meerbusch and Oberkassel (part of Düsseldorf’s district 4) with further expansion, starting in North Rhine-Westphalia which has a population of about 18 million people.

Picnic is also expanding its delivery service in the Netherlands, to Noord Brabant, starting with Breda and Tilburg. Launching in May, 185,000 families will be able to use the grocery delivery service. The next move is Belgium. There is no reason why Picnic should not eventually serve the 27 counties in the European Union. By mid-2019, around 700 of these electric carts were making deliveries around in the Netherlands and around 80 in Germany, particularly in North Rhine-Westphalia. (picnic.app)

Tomorrow’s electric trucks will most surely be working hand-in-hand with electric cargo drones in the business of doorstep delivery.

It has already begun. In 2017, Workhorse of Loveland, Ohio, already makers of an electric W-15 pick-up truck, unveiled their 100 mi. (160 km) range N-Gen delivery van as part of their concept towards delivery with their integrated HorseFly drone. The latter takes off from the parked N-Gen lifting packages weighing up to 10 lbs (4.5 kg) and delivering them to a destination within the driver’s line of sight. Production of the N-Gen-1000 began in 2019. Thus the definition of a milk float enters the future…

In September 2019, Amazon CEO Jeff Bezos placed an order for 100,000 electric delivery vans from Michigan-based startup Rivian. The announcement came during an event in Washington, DC where Bezos unveiled Amazon’s sweeping plan to tackle climate change.

What you can do: Order your good on-line and have them delivered to your door by electric vehicles, four wheels or two.

Tomorrow’s solution: Aquaporins for purifying water

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Mobility

82: Container ship management system

Problem:

100 million of these shipping containers go 25 to 40% empty from one port to the other. The emissions from the diesel fuel during these trips are wasted emissions.

Solution:

Make it easier for shipping companies to find full containers.


In 2016, Sheikh Ahsan Tariq, Hood Al Hoqani, Hamza Al Kharusi, and Wajiha Khalid Paracha of Muscat, the capital and largest city of Oman, founded Cubex Global, created a online digital marketplace, built on a secure blocktrain, for sea freight where ocean freight forwarders can buy, sell and bid on empty container space in real-time, thus enabling them to recover as much as $25 Billion in lost revenues on an annual basis on top of sustainably decarbonising as much as 20% on emissions.

Very soon, Cubex Global had 2,000 active shippers and carriers on its platform with its services being used in the Arab Emirates, Asia Pacific, and some parts of Europe.

With further funds raised by Oman Technology Fund as part of its Wadi Accelerator, Cubex has been able to expand across six continents by opening new branch offices in China, Singapore, and Taiwan.

The Omani startup had recently also won Ocean Challenge by World Economics Forum where it competed with 50 startups from the world.

What you can do: If your company is freighting goods in container ships, think of using the Cubex system.

Discover Solution 83: Biodegradable contraceptives

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Mobility

81: Autonomous electric container barge

Problem:

There are many thousands of diesel-engined container ships and barges plying the canals and rivers of Europe. Diesel combustion exhaust is an indirect cause of human cancer, heart and lung damage, and mental functioning.

Solution:

A Zero-emission autonomous container barge.

Ton van Meegen, inland waterways entrepreneur in the Nijmegen Area, Netherlands has started up Port-Liner to develop a fleet of fully-electric crewless container barges to transport freight initially from the ports of Antwerp, Amsterdam, and Rotterdam.

Called “Tesla ships”, One Kempenaar-sized vessel called the Tempsnip is 170 ft (52 m ) long and 19ft ( 6.7m) wide, and able to carry twenty-four 20ft (6 m) containers weighing up to 468 tons (425 tonnes).

Its electric motors will be driven by 20-ft (6 m) Vanadium Redox Flow Batteries (VRFB), giving it 15 hours of power, charged on shore by the carbon-free energy provider Eneco. Although designed to operate without any crew, EC52 will be manned initially.

Adjustable wheelhouses enable them to go under 5m60 (16 ft) bridges, while by flooding its ballast tanks, it can further reduce its height.

The EC 110 version has a length of 328 ft (100 m) and a width of 38 ft (11m45), to load 14 containers of 20 ft (6 m). or 7 containers of 40 ft.(12 m) or any combination of the two sizes.with four E-Powerboxes would have an action radius of about 30 hours (143 mi or 230km).

This allows the vessel to easily cover the Rotterdam/Antwerp/Duisburg corridors, at competitive cost compared to conventional diesel propulsion. The ship can be customized (dimensions, cargo type ) up to 7700 tons (7,000 tonnes) .

Port-Liner submitted a project under which it will build five hybrid barges that will ply between De Kempen intermodal terminal in the Netherlands and Antwerp. Thanks to these hybrid barges there will be 23,000 fewer diesel trucks on the roads annually and a reduction of about 18,000 tonnes per year of CO₂.

According to a report from transportation news site “Elektrek », the 100 million-euro (US$122 million) project has been supported by a €7 million (US$8.6 million) subsidy from the European Union, with Loadstar also having reported that the Port of Antwerp had added a €200,000 (US$245,000) subsidy as part of a wider initiative to improve its port’s efficiency. Port-Liner can build 500 of these ships per year.

The battery pack could also be used to retro-fit existing river barges. During summer 2020, the 443 ft (135 m) Portliner Anna went on trials from Werkendam, southern Netherlands.

What you can do: If your company is freighting goods, think of using the rivers instead of the roads.

Discover Solution 82: No more half-empty containers

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Mobility Human Effort

67: Carpooling

Problem:

Four to six-seater privately owned automobiles are seldom full, creating massive traffic holdups and emitting huge amounts of greenhouse gas.

Solution:

Carpooling or ridesharing consists of a private vehicle owner sharing their ride with others.


It first became prominent in the United States as a rationing tactic during World War II. It returned in the mid-1970s due to the 1973 oil crisis and the 1979 energy crisis. It was also known as “hitch-hiking”.

At that time the first employee vanpools were organized at Chrysler and 3M. Recently, however, The Commuter Benefit system linked to the Internet has facilitated growth for carpooling and the commute share mode has grown to 10.7% in 2005.

In 2007 with the advent of smart phones and commercially available GPS, computer programmers John Zimmer and Logan Green, from Cornell University and the University of California, Santa Barbara respectively, rediscovered and created carpooling system called Zimride.

This was a precursor to Lyft launched in the summer of 2012 which operates in 640 cities in the United States and 9 cities in Canada. It develops, markets, and operates the Lyft mobile app, offering car rides, scooters, and a bicycle-sharing system.

In China, since Didi Chuxing set up a carpooling service called Hitch in Beijing, Harbin, Taiyuan, Shijiazhuang, Changzhou, Shenyang and Nantong, it has clocked more than a billion rides of trips less than 31 mi. (50 km.) in metro areas between 5am and 8pm for female users. Male users can enjoy the service till 11pm.

Due to the COVID19 pandemic, provided social distancing and mask wearing are observed, carpooling, hand-in-hand with public transport systems, will remain most effective when all the vehicles involved are zero emission electric.

Tomorrow’s solution: biodegradable cell phones

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Mobility Human Effort

57: Electric buses are leading the EV revolution

Problem:

The three million diesel-engined buses circulating in the world, account for nearly half of all nitrogen oxides (NOx) and more than two-thirds of all particulate matter (PM) emissions from US transportation sources.

Solution:

Electric buses.


In 2018, there were about 425,000 electric buses in service in the world’s cities. Almost all—99 % of them—were in China. Arguably the first commercial li-ion electric bus was developed by Mr Lu Guanqiu at the Wanxiang Electric Vehicle Company (WXEV).

The company traces its origins to the creation of a repair shop for agricultural machinery in 1969 in the people’s commune Ningwei. In 1979, a factory for agricultural machinery was created.

Then in 2000, WXEV bought a li-ion battery company and three years later they were running a prototype li-ion bus on Route Y9 around West Lake, Hangzhou City.

By 2009, a fleet of these had clocked up 350,000 mi. (560,000 km) on this route and WXEV had delivered buses to major cities in China, including Shanghai, Hangzhou, Guangzhou, Zhengzhou, Nanchang, etc.

They also supplied 100% electric buses to the 16th Asian Games, held in Guangzhou in 2010 while at the Shanghai Expo 2010, Wanxiang deployed 160 buses, each with 65 seats and 300 batteries, on two 8.6 mi (14km) long lines, each capable of a range of 50 mi. (80km). The additional batteries were charged in a hall and changed by robots in 6 minutes.

There will be 1.5 million electric buses in use worldwide by 2030, according to the International Energy Agency Europe.

Every five weeks, 9,500 brand new electric buses take to the roads in China: that is the equivalent of the entire London bus fleet. A number of cities in the Europe’s Nordic region such as Oslo, Trondheim and Gothenburg also have electric buses in operation. Only 1.6% of all city buses in Europe are electric. In the US, it is only about 0.5%.

Alongside the biggest manufacturer, BYD (75,000 units), other electric bus manufactures include

What you can do: Ride regularly in an electric bus

Discover Solution 58: biofuel from prickly pears

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Materials Mobility

45: Building boats from bioplastics

Problem:

Boats built of glass-fibre reinforced plastic are very expensive to recycle and usually end up as carcasses in some muddy estuary.

Solution:

The Netherlands
Over in Friesland and Omrin, in August 2019, 10XL of Dordrecht teamed up with Frisian waste management company Morssinkhof in the creation of a 3D printed sloop made out of recycled polypropylene.

The 20ft (6m) boat was printed by a robotic arm with six axes, taking around 24 hours to create. It belongs to the municipality of Súdwest-Fryslân. Now that the company has more or less perfected the design, they are planning to open a ship building factory in Friesland.

USA
Two months later, the University of Maine’s Advanced Structures and Composites Center used the world’s largest prototype polymer 3D printer to create the 25 ft (7.6 m), 5,000 lb (2,268 kg) ship, dubbed 3Dirigo. At the end of the event, the team tested the seaworthiness of its boat in UMaine’s Alfond W2 Ocean Engineering Laboratory, which features a multidirectional wave basin and a high-performance wind machine.

If pushed to its limits, the 3D printer can create objects up to 100 ft. long, 22 ft. wide, and 10 ft. high.(30m x 6.7m x 3 m) (composites.umaine.edu)

Bioplastics News, July 9, 2018 ; “Frisian companies helping create 3D printed boat from recycled plastic,” The Northern Times, August 12, 2019.

Discover solution: the wonders of PET

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Materials Mobility

44: Cars made from soybeans, coffee and tequila

Problem:

Vehicles made in steel and aluminum which are costly to extract, must be taken to a scrapyard for an energy-expensive process involving crushing, then shipping off to a recycling center where they are shredded and separated into small pieces, which are then sorted into various metals.

Solution:

USA
In the early 1940s, Henry Ford experimented with making plastic parts for automobiles. These experiments resulted in what was described as a “plastic car made from soybeans.

Based on the work of Afro-American scientist/botanist George Washington Carver, the “Soybean Car” was unveiled by Henry Ford on August 13, 1941 at Dearborn Days, an annual community festival. The exact ingredients of the plastic panels are unknown because no record of the formula exists today.

On the other hand, the Trabant automobile of which several million were made between the late 1950s and about 1990, had most of its body panels made from phenol-formaldehyde reinforced with cotton. The average life span of these cars was more than 30 years.

Sixty years later, in 2001, Deborah Mielewski, the Senior Technical Leader of Materials Sustainability at Ford Motor Company’s Research and Innovation Center in Dearborn, Michigan, initiated the biomaterials program.

Her team was the first to demonstrate soy-based foam that met all the requirements for automotive seating, enabling Ford to include the product first on the 2008 Mustang, then in every Ford North American-built vehicle.

Ford Research’s next step was to look at the agave fruit. The blue agave cactus Agave tequilana has spiked leaves and a round, fleshy core (the piña) and grows in the hot and arid regions of Mexico and the Southwestern United States.

The leaves are chopped off and the core is cooked and crushed to create juice, which is fermented and distilled to make tequila.

Jose Cuervo make the best-selling tequila in the world. As of 2012, Jose Cuervo sells 3.5 million cases of tequila in the US annually, and a fifth of the world’s tequila by volume.

Ford teamed up with Jose Cuervo to make bioplastics from agave fibre waste that otherwise must be burned or sent to the landfill, for use in vehicle interior and exterior components such as wiring harnesses, storage bins and HVAC units. This could make cars lighter and improve fuel economy.

Mielewski at Ford has also teamed up with McDonald’s to incorporate coffee chaff — coffee bean skin that comes off during the roasting process — into the plastic headlamp housing used in some cars.

The coffee version is more sustainable because it is lighter and does not use the talc which, as a mineral, is not renewable. Coffee chaff, on the other hand, is widely available. McDonald’s also achieved its goal of sourcing all of its US coffee sustainably, one year ahead of schedule, and is also working with competitors to develop more environmentally friendly coffee cups. (corporate.ford.com)

Poland
At the Gdańsk University of Technology in Wroclaw County Selena, a research group led by Wojciech Komala, is turning to plants that are not used in the human food chain as a potential source of eco-friendly plastics.

One environmental benefit of 3D printing is the ability to print items anywhere, even in a store or at home. This theoretically could significantly reduce the need to transport items and therefore lower the emissions associated with that transportation. Unlike subtractive manufacturing, 3D printing uses only the material it needs when layer by layer is added so reducing waste, while it is also capable of reusing plastic waste.

Using 3D printing, automobile dashboards and other interior components could soon be made from Tytan which has been protected by patents in Poland, Germany, France and Great Britain.

Japan
A research team led by Professor Hiroyuki Yano at Kyoto University is working on nanocellulose, a wood pulp material for automobile door panels, fenders and car hoods, a material as strong as steel, but 80% lighter. The team chemically treats wood pulp, which consists of millions of cellulose nanofibres (CNFs), and disperses these CNFs into plastic. (rish.kyoto-u.ac.jp)

Researchers at Oak Ridge National Laboratory (ORNL) in Tennessee have spent a lot of time working with unique 3D printing materials, such as polyester, lignin and nanocellulose. In 2019, a new research collaboration between ORNL and the University of Maine’s Advanced Structures and Composites Center aims to increase efforts to use nanocellulose as 3D printing materials.

Together, the team will work with the forest products industry to create new bio-based 3D printing materials that can be used to make products for building components including automobiles.

One of their partners is American Process Inc. with its nanocellulose product BioPlus, made at the company’s plant in Thomaston, Georgia. ORNL have already used their “Big Area Additive Manufacturing” (BAAM) a large fused deposition modeling (FDM) 3D-printer, in collaboration with Cincinnati Incorporated to print the full-sized, National Harbor Strati electric car in conjunction with Local Motors in Phoenix, Knoxville, and National Harbor.

The car took just 44 hours to print during the 2014 International Manufacturing Technology Show in Chicago, Illinois. The printing was followed by three days of milling and assembling.

After the car was printed, the mechanical and electrical parts such as battery, motors, and suspension were manually assembled, with the completed car first test-driven on September 13, 2014.

Local Motors also located to Tempe, Arizona where they teamed up with IBM’s Watson IoT’s AutoLAB to release the self-driving Olli shuttle bus. Local Motors has also set up localized micro-factories in Phoenix, Las Vegas, National Harbor, and Berlin, which design and manufacture automobiles in the regions they serve.

This plan has helped the company achieve a small-batch, on-demand business model, so they can keep a small footprint while working on big ideas such as the Olli bus, that have the potential to redefine existing industries. (ornl.gov)

In 2014, Mitsubishi Chemical Corporation announced the development of a new grade of high-performance, high-transparency bio-based engineering plastic called DURABIO™, for use in touch panels on automobiles, using plant-derived isosorbide as its raw material. (m-chemical.co.jp)

Netherlands: In 2018, Eindhoven University of Technology researchers created the first car made completely out of bioplastics.

The Bioplastic car was named Noah and weighs 794 pounds (360 kg) without batteries, approximately half the weight of a regular car. The batteries weigh 132 lb (60 kg). The chassis  is made from sugars, the body is made from polylactic acid (PLA) and the car is weather-proof. (tue.nl)

Morgen Filament; Axel Barrett, “First Car Made Completely From Bioplastics”

Discover solution 45: nanocellulose boats.

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Mobility Human Effort Materials Your Home

33: Muzzicycles

Problem:

Bicycles are the most energy efficient form of transportation in the world, but the manufacturing of metal frames and components is energy and carbon intensive.

Solution:

The Muzzicycle. A bicycle made of recycled plastic to replace at least some of the 2 billion in the world that are made of steel and  aluminium.


In 1998, Juan Muzzi, a Uruguayan artist and mechanical engineer living in Sao Paulo, Brazil began research into PET and nylon materials including plastic bottles, shampoo containers, car dashboards and kitchen trash cans as a source of raw material, to make a plastic bicycle. It would not rust, be sturdier, more flexible and cheaper.

By 2008, Muzzi had found a way to integrate his molded frames with wheels, mudguards, pedals and seats, but it took four further years of testing to market the product to secure the seal of quality from INMETRO (Brazil’s National Institute of Metrology, Standardization and Industrial Quality).

By then a plant had been built which could take in 17,000 tons (15,400 tonnes) of recycled plastic every year using it to produce 10,000 Muzzicycles per month in every colour of the rainbow.

With 200 plastic bottles going into each frame, the process uses far less energy than is required for making traditional metal frames, saving well over 5 tons (4.5 tonnes) of CO₂ emissions, although a steel bicycle frame will lasdt a lifetime.

In 2020, Do Bem, manufacturer of fruit juice made a promise to remove from the environment 100% of the amount of long-life cartons that it produces per year, approximately 44 million.

This has included the donation of 20 Muzzicycles to four ngos in Rio de Janeiro: “Champion Hug”, “Maré Development Network”, “Irmãos Kennedy Community Center” and “Yes, I am from the Middle”.

Additionally, while working with Teto and Ecolar, the polyaluminium used to line Do Bem’s fruit juice cartons would be recycled into glasses, tiles and floors – the last two items will be used in the construction of sustainable housing organizations.

The production of a tile, for example, takes 500 boxes. Each house has 20 square meters and is made with 63 sheets and 16 recycled tiles, which requires about 40,000 cartons

In 2012 after discovering the Muzzicycle, Juan Carlos Seguro of Medellin, Colombia set up Eco Muévete Seguro making and marketing his bikes as Re-ciclas, or Re-cycles. Seguro then partnered with a local recycling firm, Kaptar, which operates a network of bottle collecting machines that link to smartphone applications.

Bottle collectors, by depositing bottles in the machine, earn points that can be spent on benefits such as subway tokens and movie passes. Kaptar’s machines take in 2,000 polyethylene terephthalate (PET) bottles every day.

Now there is a waiting list of at least 2,500 people to buy a recycled frame bike that is custom made in Sao Paulo. Juan Muzzi is now planning to manufacture recycled child’s bikes and plastic wheelchairs.

Discover solution 34: the billion tree tsunami

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Mobility

24: Electric cars

Problem:

Overall, diesel and petrol automobiles emit hydrocarbons, carbon monoxide and lead pollution contributing towards the GHG thread.

Solution:

The electric automobile is far less polluting.

From 1997, the Toyota Prius hybrid-electric automobile was the ambassador for the revival of the solution of the electric automobile. Since its launch, Toyota has sold 4.3 million units Currently, over thirty manufacturers are making battery-electric automobiles with a range of 250 to 700 miles (400 to 1,000km).

According to the “Global EV Outlook 2020”, the sales of electric cars reached 2.1 million globally in 2019, surpassing 2018 – already a record year – to boost the stock to 7.2 million EVs. Annual sales of EVs is predicted to exceed 3.5 million vehicles in 2030, reaching more than 20 percent of annual vehicle sales in 2030.

BloombergNEF expects one in 10 vehicles purchased in 2025 will be battery-powered and although COVID-19 has temporarily put the brakes on, by 2022 there will be over 500 different EV models available globally.

Three of the world’s best-selling electric automobiles are the Nissan Leaf (500,000 units), the Tesla Model 3 (500,000 units) and the Renault Zoë (218,000 units), according to EV-Volumes. The two-seat Renault Twizy quadricycle has sold over 30,000 units.

And on September 22, 2020, Tesla announced it would have an electric car priced at $25,000 available in the US market by 2023.

Bloomberg adds that by 2040, the world will need about 12 million public charging points. As of July 2019, there were over 170,000 public charging stations for electric vehicles in Europe, over 400 charging stations are owned by Ionity with an average of six charging points per station.

As of July 2020 The Tesla-only fast-charging is now at 2,035 public stations with 18,100 individual chargers in North America, compared to about 1,400 charging points for ChargePoint, a company that operates an independent network of EV chargers and 1,660 points for Volkswagen’s Electrify America network.

General Motors is teaming up with the EVgo charging network to add 2,700 fast-charging connectors in cities across the U.S.  By August 2020 EV charging stations passed the million mark globally.

There are almost one dozen Apps which inform drivers there whereabouts of the nearest and most available charging points. As the leading app for EV drivers, PlugShare provides near-global coverage of charging stations and over 800,000 downloads.

Global EV Outlook 2020”, IEA Technology report ,June 2020; “The Electric Vehicle Outlook 2020”, Bloomberg New Energy Finance

Discover solution 25: Sharkskin as an inspiration in the combat against hospital bacteria

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Mobility

9: Electric airplanes – the third revolution

Problem:

Commercial flights now account for 2.5 % of global CO2 emissions. The aircraft industry is expecting a seven-fold increase in air traffic by 2050, and a four-fold increase in GHG emissions, unless fundamental changes are made.

Solution:

Fortunately the world of aviation is boldly accelerating into a new, more silent and less polluting era of electric propulsion. Described as the ‘Third Revolution’ in aviation (after heavier than air and jet engines) the introduction of hybrid-electric aircraft could be a massive breakthrough for sustainable aviation.

From the stratosphere to door-to-door, a “hangar” of differing prototypes have now entered into their series-production phase, be they airships, or airplanes carrying up to eight passengers or training would-be pilots, be they vertical take-off drones which can carry a single passenger across a city, or those for delivery, cinema or sport, or merely toys which can be hand-launched and piloted using virtual reality.

One example, the two-seat Pipistrel Taurus Electro G2 electric aircraft is being manufactured at a plant in Italy, 15 mi. (25 km) away from the current Pipistrel Headquarters in Slovenia. Work is underway to mass-produce 4-seater and 19-seater hybrid Pipistrel airplanes at a plant in China from 2020.

In Israel, the Eviation Alice can fly 650 mi. (1,046 km) at around 300mph (480kph), 260 knots with three electric motors, one on the tail and one on each wingtip. The prototype carries a 900 kWh li-ion battery and carries nine passengers.

US regional airline Cape Air has already expressed an interest in the all-electric Alice, saying it will order a “double-digit” number of the aircraft to operate on some of its short routes. The aircraft is expected to take to the skies in 2022. (eviation.co/alice).

For long haul trans-continental flights, one solution is the hydrogen fuel cell. In Germany, the first short 15-minute demonstration flight of the hydrogen fuel-cell powered HY4 was made in September 2016 at Stuttgart Airport above the public and the media; air traffic control had all the other air traffic stopped, so spectators could hear the almost-completely-silent fuel cell airplane, flown by pilots, Johannes Anton and Nejc Faganelj in one cockpit with two dummy passengers in the other.

In 2018, the E-Fan X project to develop a hybrid-electric aviation propulsion system was unveiled by Airbus, Siemens and Rolls-Royce. Parts manufacturing began in 2019, but the program fell victim to the COVID19 pandemic

In March 2017 Professor Josef Kallo, head of the Institute for Energy Conversion and Storage at Ulm University, describing this flight, announced plans to test the technological platform over the coming years before the target will be upped to six or eight seats. He explained: “Recent studies on commercial aviation show that there are indeed feasible propulsion designs for regional air travel with up to 40 seats and a range of 435 mi. (700 km) or below, even though the technical challenges are significant.”

Other solutions are being trialled such as electric tugs towing more electric airliners out to and back from the runways of international airports whose rooftop solar panels could recharge them, while one day a V-formation of long-haul airliners could create a wake to further reduce fuel consumption.

The above does not include development of  half a dozen Vertical Take Off and Landing (eVTOL) 2-6 seater electric city taxi drones such as the

and more on the way!

Discover solution 10: high fashion fabrics from fish skins, seaweed, algae and used toilet paper.

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.

Categories
Mobility

5: Go-Ahead • vehicles that filter air as they drive

Problem:

Construction, industrial and vehicle-generated PM10 (Particulate Matter) contribute to life-shortening cardiovascular illnesses and respiratory diseases.

Solution:

To mount various types of air purifiers onto circulating vehicles. In September 2018, Bluestar, one of the UK’s largest bus operators launched the country’s first air filtering bus prototype in an effort to tackle air pollution in the city of Southampton.

They chose one of their low-emission Euro VI buses, each of which produces no more than 0.08g/km of nitrogen oxide.

The filter, designed and manufactured in collaboration with PALL Aerospace, headquartered in Port Washington, New York, the world’s largest aerospace and defence filtration company, is made in an engine barrier-type filter construction and designed to remove up to 99.5% of particles from the air without any impact on the passenger or travel experience.

Southampton was chosen as the location for the pilot following a 2018 World Health Organisation (WHO) report, which warned that the city was at the limit of unsafe air pollution.

From September 2018, running for 100 days, covering 9,000 miles (14,500 km), the pilot bus was able to clean 113 million cubic ft. (3.2 million cubic m.) of the city’s air, the equivalent to the volume of 1,288 Olympic swimming pools.

The air filter took in 35 cubic feet (1 m³) of air per second meaning that in one hour it was filtering the same volume of air as 6,000 people breathing.

It extracted PM10 weighing a total of 65g – roughly the same as a tennis ball – over the course of the trial. Encouraged, Bluestar decided to retro-fit an additional five buses on the number seven route serving Lordshill and Sholing via the general hospital, Millbrook, Shirley, City Centre and Woolston.

While a single bus has the capacity to clean the air on its route every 215 days, to a height of 33 ft. (10 m), it would take just nine days for the newly expanded fleet to achieve the same target passenger capacity and remove as much as 2.8 lb (1.25kg) of PM10 from the air every year.

Further encouraged, from summer 2020 “breathe Bluestar” introduced the technology to Oxford, Plymouth, Newcastle, Manchester, Crawley/Brighton.

A further five buses were also brought into service in Southampton. If the air filter were to be deployed on 4,600 buses across the UK, it could remove as much as 2,425 lb (1,100 kg) of PM10 particles every year.

In parallel, Bluestar also fitted a total of 19 vehicles with solar panels, one of them fitted with the air filter to see whether solar energy could be used to make the filter completely self-sufficient. (www.bluestarbus.co.uk)

Shivom Sharma and François Maréchal at the Industrial Process and Energy Systems Engineering group, EPFL in Zurich had patented a concept which involves capturing CO₂ within the exhaust system of a truck, converting it into a liquid and storing it on the vehicle.

The liquid CO₂ would then be delivered to a service station where it will be turned back into fuel using renewable energy. The system could theoretically work with all trucks, buses and even boats, and with any type of fuel.

The advantage of this system is that it can be retrofitted to existing vehicles in order to neutralize their impact in terms of carbon emissions. (epfl.ch/labs)

In terms of private transport, automobile manufacturer Hyundai has developed the NEXO hydrogen fuel cell automobile with an advanced air purification system capable of filtering 99.9% of very fine dust.

As a test, they teamed up with University College London (UCL) to take on London’s dirtiest driving route, which includes areas such as Kings Cross, Westminster, Elephant and Castle, and Deptford.

Hyundai claims that if just one NEXO is driven for an hour, it has the potential to purify 59 lb (26.9 kg.) of air, which it says is the same amount as 42 adults breathe in 60 minutes. The car producer also claims that if there were 10,000 NEXOs on the road it would subsequently have a carbon-reducing effect akin to planting 60,000 trees. (hyundai.com)

Other schemes in South Korea and China are also working on air purifying transport. And in Thailand there is also work on an air purifying bike.

In Rotterdam, the Netherlands, Studio Roosegaarde’s Smog Free Project has teamed up with China’s largest bike-share company Ofo, to develop a Smog Free Bicycle with a dual function: not only does it offer transport on two wheels and ease traffic congestion, it also cleans smog.

Through a device mounted on the handlebars, polluted city air is drawn in through vacuum suction while the bicycle is in motion. As the air passes through a filter, it is cleaned of harmful particles and purified, literally giving the cyclist a breath of fresh air.

Dan Roosegaarde often takes his inspiration from biomimicry for his innovative eco-friendly projects. The Smog Free Bicycle was inspired by the manta ray, the large flatfish which has a unique filter system of pores that acts as a sieve for the plankton it feeds on, while expelling the purified seawater through its gills.

The plan is to launch an initial 300 bicycles. There is interest in cities such as London, Paris and Luxembourg as part of their bicycle-sharing programs. (.studioroosegaarde.net)

Together, fleets of buses, automobiles, electric and pedal bicycles, all fitted with air filtering systems could certainly make a contribution to planet protection.

Shivom Sharma and François Maréchal, “Carbon Dioxide Capture From Internal Combustion Engine Exhaust Using Temperature Swing Adsorption” Frontiers in Energy Research, 16 December 2019.

Discover solution 6: a machine that recycles soot to make printing ink

Support 366solutions on Patreon and receive the ‘366solutions Insider Newsletter’ with updates on the monthly progress and successes of published solutions.